metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xue-Mei Yang

School of Basic Medical Science, Guangdong Medical College, Dongguan 523808, People's Republic of China

Correspondence e-mail: xuemeiyang131@163.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.036 wR factor = 0.095 Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography

All rights reserved

Bis(acetylacetonato- $\kappa^2 O, O'$)(4-hydroxybenzaldehyde thiosemicarbazone- κS)zinc(II)

In the title compound, $[Zn(C_5H_7O_2)_2(C_8H_9N_3OS)]$, the Zn atom has a square-pyramidal coordination formed by four O atoms belonging to two acetylacetonates in the basal square plane and the S atom of the ligand at the apex. The occurrence of N-H···O, N-H···S and O-H···O hydrogen-bonding interactions results in the formation of a layered structure parallel to the (100) plane.

Comment

In recent years, the search for novel molecular chromophores has focused on coordination systems due to their ability to offer a large variety of molecular structures by changing metals, ligands and coordination numbers to enhance thermal stability, and to diverse electronic behaviours by virtue of the coordinated metal center (Long, 1995; Jiang & Fang, 1999; Bella *et al.*, 1995). It has been proved that involvement of metal ions with d^{10} electronic configuration (such as Zn^{2+} , Cd^{2+} and Hg^{2+}) can cause excellent transparency in the visible region, as the metal ions do not form a conjugated system with the ligands and are thus not involved in intramolecular charge transfer (Qin *et al.*, 1999). We report the synthesis and crystal structure of a new zinc(II) coordination compound, (I), with corkscrew-shaped square-pyramidal conformation.

The Zn atom is coordinated by four O atoms of acac groups and one S atom of the HBT (4-hydroxybenzaldehyde thiosemicarbazone) ligand to form a distorted square pyramid (Fig.1). Zn–O distances are 1.996 (2), 2.029 (2), 2.030 (2) and 2.051 (2) Å. The S–Zn bond length is 2.4044 (9) Å while the C11–S1 bond length is 1.717 (3) Å, which is intermediate between a C–S single (1.82 Å) and C=S double (1.56 Å) bond (Duan *et al.*, 1999). The whole molecule can be seen as a corkscrew, in which two acetylacetonato groups form the handles and the HBT group forms the screw.

The occurrence of N-H···O, N-H···S and O-H···O hydrogen-bonding interactions results in the formation of a layered structure parallel to the (100) plane. (Table 1 and Fig. 2).

Received 5 December 2006 Accepted 13 December 2006

Experimental

0.193 g (1 mmol) HBT was added to an acetone–acetylacetone (1:1) solution (10 ml) of $(CH_3)_2COZn(acac)_2$ (0.33 g, 1 mmol) at 323 K. The mixture was reacted for about 1 h to obtain a yellow precipitate, which was then filtered off and dried under vacuum. (Yield 0.30 g, 65%). Single crystals suitable for X-ray crystal structure analysis were obtained by slow evaporation of an acetoneacetyl (1:1) solution in air.

Z = 8

 $D_x = 1.409 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 1.26 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.042$

 $\theta_{\rm max} = 26.0^{\circ}$

Block, colorless

 $0.48 \times 0.41 \times 0.39 \text{ mm}$

20382 measured reflections 4266 independent reflections

2782 reflections with $I > 2\sigma(I)$

Crystal data

$[Zn(C_5H_7O_2)_2(C_8H_9N_3OS)]$
$M_r = 458.82$
Orthorhombic, Pbca
a = 14.3048 (7) Å
b = 10.1746 (5) Å
c = 29.7259 (15) Å
V = 4326.5 (4) Å ³

Data collection

Bruker SMART 1000 CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.559, T_{\max} = 0.613$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0356P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 3.1381P]
$wR(F^2) = 0.095$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.005$
4266 reflections	$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$
258 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H5···O1 ⁱ	0.82	1.95	2.742 (3)	162
$N2-H2\cdot\cdot\cdot S1^{ii}$	0.86	2.57	3.422 (3)	171
$N1 - H1E \cdots O2$	0.86	1.96	2.805 (3)	169
$N1-H1D\cdots O4^{iii}$	0.86	2.16	2.926 (3)	149
Symmetry codes:	(i) $x, -y +$	$\frac{1}{2}, z + \frac{1}{2};$ (ii)	-x + 2, -y + 1	, -z + 1; (iii)

-x + 2, -y, -z + 1.

All the H atoms were placed in geometrically idealized positions (C-H = 0.96 Å) and refined as riding, with $U_{iso}(H) = 1.5U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Bruker, 2005); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Figure 1

The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as spheres of arbitrary radii.

Figure 2

Crystal packing of the title compound, showing the hydrogen-bonding network. Hydrogen bonds are represented as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.

The author thanks Dr Ren Peng for helpful discussions.

References

- Bella, S. D., Fragala, I., Ledoux, I. & Marks, T. J. (1995). J. Am. Chem. Soc. 117, 9481–9485.
- Bruker (2001). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT-Plus. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duan, C. Y., Liu, Z. H., Shi, Y. C. & You, X. Z. (1999). J. Coord. Chem. 47, 433– 439.
- Jiang, M. H. & Fang, Q. (1999). Adv. Mater. 11, 1147-1151.
- Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-38.
- Qin, J. G., Liu, D. Y., Dai, C. Y., Chen, C. T., Wu, B. C., Yang, C. L. & Zhan, C. M. (1999). Coord. Chem. Rev. 188, 23–34.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.